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Application of adaptive digital signal processing
speech enhancement for the hearing impaired
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Abstract--A major complaint of individuals with normal
hearing and hearing impairments is a reduced ability to
understand speech in a noisy environment . This paper
describes the concept of adaptive noise cancelling for
removing noise from corrupted speech signals . Applica-
tion of adaptive digital signal processing has long been
known and is described from a historical as well as
technical perspective . The Widrow-Hoff LMS (least mean
square) algorithm developed in 1959 forms the introduc-
tion to modern adaptive signal processing . This method
uses a "primary" input which consists of the desired
speech signal corrupted with noise and a second "ref-
erence" signal which is used to estimate the primary
noise signal . By subtracting the adaptively filtered esti-
mate of the noise, the desired speech signal is obtained.
Recent developments in the field as they relate to noise
cancellation are described . These developments include
more computationally efficient algorithms as well as
algorithms that exhibit improved learning performance.

A second method for removing noise from speech, for
use when no independent reference for the noise exists,
is referred to as single channel noise suppression . Both
adaptive and spectral subtraction techniques have been
applied to this problem—often with the result of decreased
speech intelligibility . Current techniques applied to this
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problem are described, including signal processing tech-
niques that offer promise in the noise suppression appli-
cation.

INTRO?DUCTION

Hearing impairment is not only the most prevalent
communicative disorder, it is also the number one
chronic disability affecting people in the United
States . A major complaint of those with hearing
impairments is a reduced ability to understand speech
in everyday communication in a noisy environment.
Even with the absence of hearing impairment, the
addition of background noise can signifiantly reduce
the intelligibility of speech . In 1956, Widrow pro-
posed an adaptive filter as shown in Figure 1 which
can be used to reduce interference when a second
sample of the noise is available . This technique was
developed at Stanford University in 1959 and applied
to a pattern-recognition scheme known as Adaline.
In 1965 the first adaptive noise cancelling system
was built by two students at Stanford University.
In 1972, the first all-digital adaptive filter was built
by McCool and Widrow at the Naval Undersea
Center in Pasadena, California . In 1975, several
applications of the LMS algorithm were presented
which included adaptive noise cancelling and noise
suppression (32) . The LMS algorithm was simple—
both in the number of calculations required for it's
update and in it's derivation—and robust in a number
of applications . An adaptive feedback constant, p ,
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SIGNAL + INTERFERENCE

Figure 2.
An adaptive LMS filter.

tion from the desired optimal filter results . By
reducing the size of the feedback coefficient in
Equation [3], the misadjustment can be made arbi-
trarily small . However, since the adaptation time is
inversely proportional to µ, a large µ for fast learning
is required in applications where the statistics of the
input signals vary with time . This selection, how-
ever, results in increased misadjustment or residual
error. One may optimize the choice of µ in cases
of these nonstationary inputs by selecting a feedback
constant such that the error due to tracking the
nonstationarity in the signal just equals the misad-
justment or error residual that occurs because of
the constant updates that occur after the filter
coefficients, wp(k), have converged to their desired
value (31).

Since the filter parameters adapt in such a way
as to provide an estimate of n p ,,, (k) from the reference
signal n,.ef (k), the task in applying the algorithm to
noise cancellation becomes one of providing suffi-
cient degrees of freedom that an acceptable solution
may be obtained . The following design or selection
criteria must be followed:
1. The number of digital filter stages (N in Equation

[1] should be selected so that N times T, the
sample period of the digital system, is larger than
the impulse response or reverbertion time of the
acoustic environment . For small rooms, typical
filter lengths are on the order of 1,000 to 2,000
stages for a sample rate of 10 kHz . It is not
uncommon to require 8,000 to 16,000 stages of
adaptive filtering for moderate size rooms at a
sample rate of 10 kHz.

2. The selection of the feedback constant µ is made
according to the desired adaptation rate . The
choice of µ for a given adaption rate with common
broadband noise interference is given as

where o represents the variance of the reference
noise process, n,.ef(k), and -r is the desired adap-
tation time in samples. In no case should the
upper limit for p, exceed oV2 or instability will
result.

3. A time delay must be inserted into either the
primary or reference channel as necessary to
insure that the desired filter is causal . That is,
the reference noise signal should enter the ref-
erence input to the adaptive filter during the same
processing period in which the correlated primary
interference arrives at the summing junction in
Figure 1.

4. In cases where there is leakage, care must be
taken to minimize leakage of the desired speech
signal into the reference input . In such cases, the
interference cancellation is limited to the ratio of
the interference signal to speech signal in the
reference.
Following these four procedures in the use of an

adaptive filter has resulted in interference reductions
corresponding to speech enhancement of :gip to 60
dB ., but more typically 30 dB.

A variant of the LMS algorithm that provides the
ability to adapt the feedback constant µ was devel-
oped by Harris (17) . In this approach known as the
VS adaptive algorithm, a separate p p (k) is calculated
for each stage of the filter . Results of the VS
algorithm applied to noise cancellation show a speed-
up in adaptation time of up to a factor of 50 without
increasing the residual error while maintaining both
speech quality and intelligibility.

Frequency Domain Adaptive Filters

One of the drawbacks of the LMS adaptive filter
in processing speech signals is the error criterion,
which is selected for the minimization of mean
square error and which results in an adaptation
process that treats frequency regions of higher
energy content before adapting to regions of low
energy. As a result, the lower frequency regions of
the speech spectrum receive an inordinate amount
of attention at the cost of the high-frequency speech
regions—which contain much of the intelligibility.
As a second consideration, users of adaptive filters
are always anxious to find more efficient computa-
tional techniques to perform the adaptive filtering
tasks . As a result, several papers describing fre-
quency-domain implementations for adaptive filter-
ing have been presented (7,9,10,12,26,30). One of[4]
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corrupted 1,y rence when no independent or
second referel i- is available is referred to as noise
suppression.

In 1978 Sambur (27) proposed to apply an LMS
version of the digital adaptive filter described in the
foregoing but using reference delays equal to one
or two voice pitch periods . Sambur reasoned that
in the speech component of the corrupted signal
there would be strong correlation between the pri-
mary and delayed reference inputs . He reported
improved SNR and speech quality but did not claim
improved intelligibility . In fact, the time domain
LMS adaptive filter concentrates its computational
power first on those frequencies in the signal with
the highest energy to minimize mean square error,
(i . e., pitch and pitch harmonies where little intel-
ligibility is carried) and finally on frequencies with
the least energy (i .e ., high frequency sounds where
most of the information in speech is carried) . This
results in an output that sounds like muffled speech
deplete of high-frequency information.

The muffling effect appears to be present in most
speech enhancement systems, prompting the state-
ments by Lim (21) and Schafer (29) that the various
speech enhancement systems appear to improve the
subjective speech quality but not speech intelligi-
bility, and that successful approaches must exploit
more knowledge about the information-bearing ele-
ments of speech .

Figure 3.
Time domain adaptive LMS noise suppressor.

3 . Reverberation is introduced because the LMS
algorithm in Eqs . 1-3 responds to minimize mean
square error and will leave large values for w,,(k)
when n,, t(k-p) becomes small or is zero—as is
the case during the silent portions of speech . The
sound introduces is reminiscent of listening to a
sea-shell and li narfrig that reverberant back-
ground.
The general behavior of the adaptive noise sup-

pressor with the inherent problems just described
may be seen in Figure 4 which shows the spectrum
of noise-free speech before and after processing with
the LMS algorithm as proposed by Sambur . Here
it is clear that the high-frequency information above
about 1 .2 kHz, which is evident in Figure 4a, is
gone in Figure 46.

dB

Time Domain Filters for Noise Suppression

Figure 3 describes the application of the LMS
Widrow-Hoff time domain adaptive algorithm to the
problem of noise suppression . This filter is attractive
because of its relative simplicity . Sambur (27) pro-
posed the time domain implementation of the adap-
tive filter shown in Figure 3, which employs the
LMS Widrow-Hoff algorithm in Eqs . 1-3 for the
filter coefficient updates . Implementation of this
LMS adaptive filter results in three deficiencies:
1. The speech spectrum is distorted, with the low-

frequency region enhanced due to the high energy
content at the low frequencies . This is a result
of the mean square error criterion.

2. Unvoiced speech sounds are eliminated in the
signal processing by large delays which are typ-
ically a pitch period . This results in confusion
between such words as net, nets, next, etc.
leading to reduced intelligibility .

1 .25

	

2 . 50 KHz

(a) Before Processing
dB

1 .25

	

2 . 50 KHz

(b) After Processing

Figure 4.
Noiseless speech before and after processing by an adaptive
LMS filter .
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There are several approaches to reducing the dB
deleterious effects introduced by time domain adap-
tive processing . By forcing increased processor
attention to high frequencies, the spectral distortion
may be made acceptable. A second problem is
observed during the change from speech to silence
between words . The time domain adaptive processor
stops updating the filter weights when the input
signal power decreases significantly (during speech
silence) so the filter "remembers" the weights from
the prior speech . As the next word begins, an
annoying echo or synthetic reverberation effect is
produced.

One solution for overcoming these deleterious
effects has been presented by Andersen (6) . His
treatment included the following:

1 . Pre-whitening . The general behavior of the adap-
tive LMS filter in processing both high frequency-
low energy and low frequency-high energy por-
tions of the speech spectrum is illustrated in
Figure 4. In Figure 4b it is clear that the high
frequency information bearing elements of the
speech sample have been removed . By applying
a pre-whitening filter with the transfer function
given in Eq . 5

H(z) = 1 + az-'

	

[5]

where the value for a places the corner frequency
at 100 Hz.

a	 r	
KHz

2. Preservation of unvoiced speech . If the speech is
delayed more than .5 to 1 ms ., the high-frequency
portions become decorrelated and hence are
removed along with the decorrelated noise.
Therefore the amount of delay, A, allowed for
decorrelation in speech is reduced . Typical values
reported for the delay in Figure 4 were on the
order of 3 to 5 samples with a sample rate of 14
kHz . This will work well as long as the noise
interference is not still correlated for this short
delay.

3. Lossy LMS Algorithm . A modified weight update
equation as proposed by Gitlin (15) and given in
Equation [6] was employed.

wp(k + 1) = wp(k)(1– p) + 2 p,e(k)n, et (k – p) [6]

The purpose of this modification is to introduce
a "leak" factor so that the filter coefficient values
are not "remembered" during silent portions of
speech. Instead the weights are "forgotten" with
a time constant set by the leak factor (1 – p) . The
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(b) Pre-whitened Noiseless Speech

dB "

1 .25
(c) Pre-whitened Noiseless
Figure 5.
Pre-whitened noiseless speech before and after processing by
an adaptive LMS filter.

leak rate is proportional to p and may be adjusted
for listener preference.
The effect of these techniques in preserving the

high frequency information is shown in Figure 5c.
Other techniques to accomplish similar effects have
been proposed by Graupe (16) . Application of an-
other class of adaptive algorithms known as the
least-squares algorithms (previously discussed) also
promises to solve the problems, introduced by the
LMS adaptive filter, that arise primarily due to the
nonuniformity of the signal spectrum and the slow
adaptation time.

Spectral Subtraction
Spectral subtraction is a technique that exploits

the idea that the human hearing system is insensitive
to phase information in monaural hearing applica-
tions. Boll (3) and Lim et al . (23) proposed that the
short-time spectral magnitude be used to estimate
the speech spectrum . While a number of methods
exist to extract this estimate of the noise spectrum
and subtract it from the contaminated speech signal,
the basic technique uses an estimate derived from
Equation [7] .

2.50

	

KHz
Speech after Processing

[7]S(w) pri(t0 )D(w)h -
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where the capital letters refer to the Fourier trans-
forms of the s(k), d(k), and npr;(k), respectively . In

Equation 17], the value of S(w) is set to zero if the
estimate of the noise, Np,-i(w), is larger than D(w).

Error Criterion
Common to all of the above techniques is the

underlying notion that an increase in signal-to-noise
ratio will result in improved intelligibility . Indeed,
the minimization of mean square error focuses upon
portions of the speech spectrum that have the most
energy, and tends to lightly address the higher
frequency portions of the speech spectrum that carry
significant portions of the information required for
speech intelligiblity . With this question is the com-
panion inquiry, "Does an increase in signal-to-noise
ratio, which does little to aid normal-hearing lis-
teners, offer relief for hearing-impaired listeners?"
Can these algorithms, which provide their best
performance at higher signal-to-noise ratios (i .e .,
such as + 6 dB), provide hope for hearing-impaired
listeners to function with processing in such an
environment where they might typically require
perhaps an additional 12 dB of signal to function?

To answer this question, considerable effort is
planned with normal and hearing-impaired popula-
tions . However, in the midst of these efforts one is
tempted to revisit the basic notions of speech intel-
ligiblity and the human hearing system . Current
efforts in noise suppression are focusing upon models
of the hearing system . Examination of the Fletcher-
Munson curves, which describe the contours of
equal loudness, suggest the use of homomorphic
digital signal processing techniques where one min-
imizes the error, not in the incoming acoustic pres-
sure field, but rather in a transformed space that
represents the response of the ear . Further, espe-
cially in the context of the hearing-impaired listener,
that nonlinear response of the ear to a linear increase
in acoustic intensity known as recruitment must be
accommodated in such a model.

While several algorithms may be proposed to
facilitate this modified error criterion, the frequency-

domain techniques appear to come to the forefront
in noise suppression . The frequency domain algo-
rithms discussed earlier may be adapted to a mod-
ified linear error criterion by the selection of an
appropriate vector µ ; however, care must be taken
to avoid circular convolution effects . Implementa-
tion of recruitment in such algorithms is difficult.
The frequency domain technique that seems to offer
the greatest flexibility is one proposed by Ferrara
in 1985 (13) . This implementation utilizes an FFT-
based implementation with a bank of band-pass
filters and a basebanded output to accomplish adap-
tive LMS filtering . It would appear that such algo-
rithms offer some promise of noise suppression with
intelligibility gains—but then only at positive signal-
to-noise ratios.

CONCLUSION

Several implementations of techniques for accom-
plishing adaptive noise cancelling and noise suppres-
sion have been discussed . Application of two-chan-
nel noise cancellation has yielded significant gains
in speech intelligibility, in some cases by 40 percent,
while simultaneously improving signal-to-noise ratio
for speech corrupted with a variety of types of
corrupting noise—including speech babble and
broadband noise . Reports in the literature indicate
increases in signal-to-noise ratio of greater than 18
dB and of up 60 dB in specific applications . The
effective application of single-channel adaptive noise
suppression has shown progress with uniform re-
ports of an increase in "quality ." No data indicating
intelligibility improvement for normal-hearing pop-
ulations is presently available in the literature . Tests
with hearing-impaired populations to determine the
efficacy of noise suppression should be available to
the community shortly; likewise, new algorithms
which modify the error criteria in the context of the
human hearing system would seem to provide the
greatest hope for improving the processing of acous-
tic signals in the future .
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F [A3]

APPENDIX

The Frequency Domain Algorithm

The classical adaptive noise-cancelling problem
is formulated in Figure Al . Defining the primary

input as d(n) and the reference inputs as As,,(n), with
n the sample index, the desired and reference inputs

and e Further let x .2L” .m (k) represent the
EFT of the (k — 1)st and kth consecutive blocks of
the mth reference given as

Xi„,.,,,(
,,,(k)

and the output of the rnth filter

yL m,m(k) = last L,,, terms of

	

m ,(k) X.21”,,m(k)]

[A5]

where the notation A B denotes the element by
element multiplication of the two vectors A and B
which results in a vector . The sum of the outputs
from all filters of various lengths, Lm , blocked to L
output samples is

[A4]

Figure Al.
lime-domain representation of a digital adaptive filter with M
references of length le.,

may be divided into blocks with index k and rep-
resented by the vectors dL(k) and xJ„=, ,,,(k) as
follows

dj:(k) = [d(kL) d(kL + 1) re d(kL+ L

	

] [Al]

,m(k) = [xm (kL m ) .y m(kL m

x,,,(kL m

	

[A2]

where

m = 0,1,2,°” ,M

	

= reference channel number

L,=2"

and

ot,ot m = integers specifying the block lengths.

Transforms may be obtained using the matrix FFT L

as

yL(k)

	

y L,m(k) .

	

[A7]

Similarly, the error blocked to L samples becomes

E L(k) = dL l (k) — y l (k)

	

[A8]

Padding with zeroes and transforming,

2L(k) = FFT 2L

where the definition

Of, = [000° . r0] L

will be used. The weight update equation using the

yL,,H)i(k)

+

Yr,rr(k)=

L

[A6]

and

[A9]
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method of steepest descents becomes

wzL, n .n,(k + 1)

= (1 — p)w,>„n,(k) + 2pE ,Ln,(k)XL n„n,(k) [A10]

where the symbol * denotes conjugation, p specifies
the rate of leakage, and the quantity 'R is

converged to the Wiener solution ; however in the
general case, Equation [Al2] is required.

The weight vector corresponding to the tnth ref-
erence, w2L,,,,,,,(k), is updated once each L,,, samples
and the output vector y L"',n,(k) is obtained from
Equation [A5].

1o0 •

	

0

	

0

	

0

	

• 0
p µ I

	

. 0
0 0 •

	

• 0

11Ln, I

	

0

µ'L ,n

0 0 • 0

	

0

1L= •

	

[All]

The fact that the weights have been obtained by
circular convolution is denoted by - . To force the
resultant output yLyn, ,n (k) to correspond to a linear
convolution, the frequency-domain weight vector is
obtained as

,,, (k)]

[Al2]

where IL , is the L,,, x L,,, identity matrix . The trun-
cation of the weight vector in [Al2] ensures that the
last half of a time-domain representation of the
weights is identically zero. Mansour and Gray showed

	

Figure A2 is the block diagram for the frequency-
that this truncation was unnecessary with proper domain algorithm that is embodied in Equations
constraints on the input and that the weight vector

	

[Al] through [Al2].

w2L , ,n,(k) = FFT2L,

Figure A2.
Frequency-domain
filter .

algorithm for the inth reference adaptive
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